Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (28619754)
Authors El-Houjeiri L, Saad W, Hayar B, Aouad P, Tawil N, Abdel-Samad R, Hleihel R, Hamie M, Mancinelli A, Pisano C, El Hajj H, Darwiche N
Title Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice.
Journal Molecular cancer therapeutics
Vol 16
Issue 10
Date 2017 Oct
Abstract Text Acute myeloid leukemia (AML) is one of the most frequent types of blood malignancies. It is a complex disorder of undifferentiated hematopoietic progenitor cells. The majority of patients generally respond to intensive therapy. Nevertheless, relapse is the major cause of death in AML, warranting the need for novel treatment strategies. Retinoids have demonstrated potent differentiation and growth regulatory effects in normal, transformed, and hematopoietic progenitor cells. All-trans retinoic acid (ATRA) is the paradigm of treatment in acute promyelocytic leukemia, an AML subtype. The majority of AML subtypes are, however, resistant to ATRA. Multiple synthetic retinoids such as ST1926 recently emerged as potent anticancer agents to overcome such resistance. Despite its lack of toxicity, ST1926 clinical development was restricted due to its limited bioavailability and rapid excretion. Here, we investigate the preclinical efficacy of ST1926 and polymer-stabilized ST1926 nanoparticles (ST1926-NP) in AML models. We show that sub-μmol/L concentrations of ST1926 potently and selectively inhibited the growth of ATRA-resistant AML cell lines and primary blasts. ST1926 induced-growth arrest was due to early DNA damage and massive apoptosis in AML cells. To enhance the drug's bioavailability, ST1926-NP were developed using Flash NanoPrecipitation, and displayed comparable anti-growth activities to the naked drug in AML cells. In a murine AML xenograft model, ST1926 and ST1926-NP significantly prolonged survival and reduced tumor burden. Strikingly, in vivo ST1926-NP antitumor effects were achieved at four fold lower concentrations than the naked drug. These results highlight the promising use of ST1926 in AML therapy and encourage its further development. Mol Cancer Ther; 16(10); 2047-57. ©2017 AACR.


  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"


  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
ST1926-NP ST1926-NP 1 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
ST1926-NP ST1926-NP is a synthetic adamantyl retinoid stabilized as polymer nanoparticles, which may lead to reduced cell proliferation and a decrease in tumor burden (PMID: 28619754).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
Unknown unknown acute myeloid leukemia not applicable ST1926-NP Preclinical - Cell line xenograft Actionable In a preclinical study, ST1926-NP treatment resulted in reduced cell proliferation in acute myeloid leukemia (AML) cells in culture, and decreased tumor burden and improved survival in AML cell line xenograft models (PMID: 28619754). 28619754