Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (11359672)
Authors Sen M, Wankowski DM, Garlie NK, Siebenlist RE, Van Epps D, LeFever AV, Lum LG
Title Use of anti-CD3 x anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu+ tumors.
URL
Abstract Text Relapse after adjuvant chemotherapy or high-dose chemotherapy with stem cell transplant for high-risk breast cancer remains high and new strategies that provide additional antitumor effects are needed. This report describes methods to generate highly effective HER2/neu-specific cytotoxic T cells by arming activated T cells with anti-CD3 x anti-HER2/neu bispecific antibody (BsAb). OKT3 and 9184 (anti-HER2) monoclonal antibodies (mAb) were conjugated and used to arm T cells that were subsequently tested in binding, cytotoxicity, and cytokine secretion assays. Armed T cells aggregated and specifically killed HER2/neu(+) breast cancer cells. Cytotoxicity emerged after 6 days of culture, was higher in armed T cells than unarmed T cells at all effector to target ratios (E/T) tested, and increased as the arming dose was increased. At an E/T of 20:1, the mean cytotoxicity of armed activated T cells (ATC) from 10 normal subjects increased by 59 +/- 11% (+/-SD) over that seen in unarmed ATC (p < 0.001) and the mean cytotoxicity of armed ATC from 6 cancer patients increased by 32 +/- 9% above that seen for unarmed ATC (p < 0.0004). After arming, the BsAb persisted on ATC up to 72 h and armed ATC continued to be cytotoxic up to 54 h. The amount of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted was 1699, 922, and 3092 pg/ml/10(6) cells per 24 h, respectively, when armed T cells were exposed to a HER2/neu(+) breast carcinoma cell line. These studies show the feasibility and clinical adaptability of this approach for generating large numbers of anti-HER2-specific, cytotoxic T cells for clinical trials.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
HER2 BATs HER2 BATs 0 1
Drug Name Trade Name Synonyms Drug Classes Drug Description
HER2 BATs HER2 BATs are activated T cells armed with bispecific antibodies targeting both CD3 and Erbb2 (Her2), which specifically kills Erbb2 (Her2)-positive cancer cells (PMID: 11359672).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References