Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (28939558)
Authors Germann UA, Furey BF, Markland W, Hoover RR, Aronov AM, Roix JJ, Hale M, Boucher DM, Sorrell DA, Martinez-Botella G, Fitzgibbon M, Shapiro P, Wick MJ, Samadani R, Meshaw K, Groover A, DeCrescenzo G, Namchuk M, Emery CM, Saha S, Welsch DJ
Title Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib).
Journal Molecular cancer therapeutics
Vol 16
Issue 11
Date 2017 Nov
URL
Abstract Text Aberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting. Here we report the discovery of BVD-523 (ulixertinib), a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and ERK1/2 selectivity. In vitro BVD-523 treatment resulted in reduced proliferation and enhanced caspase activity in sensitive cells. Interestingly, BVD-523 inhibited phosphorylation of target substrates despite increased phosphorylation of ERK1/2. In in vivo xenograft studies, BVD-523 showed dose-dependent growth inhibition and tumor regression. BVD-523 yielded synergistic antiproliferative effects in a BRAFV600E-mutant melanoma cell line xenograft model when used in combination with BRAF inhibition. Antitumor activity was also demonstrated in in vitro and in vivo models of acquired resistance to single-agent and combination BRAF/MEK-targeted therapy. On the basis of these promising results, these studies demonstrate BVD-523 holds promise as a treatment for ERK-dependent cancers, including those whose tumors have acquired resistance to other treatments targeting upstream nodes of the MAPK pathway. Assessment of BVD-523 in clinical trials is underway (NCT01781429, NCT02296242, and NCT02608229). Mol Cancer Ther; 16(11); 2351-63. ©2017 AACR.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Ulixertinib BVD-523 ERK Inhibitor (pan) 15 Ulixertinib (BVD-523) inhibits both ERK 1 and 2, thereby preventing the activation of ERK-mediated signal transduction pathways and resulting in growth inhibition (PMID: 28939558).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
HRAS F82L missense unknown HRAS F82L does not lie within any known functional domains of the Hras protein (UniProt.org). F82L has been identified in the scientific literature (PMID: 28939558, PMID: 25360634), but has not been biochemically characterized and therefore, its effect on Hras protein function is unknown (PubMed, Apr 2020).
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
BRAF V600E colorectal cancer sensitive Ulixertinib Preclinical - Cell line xenograft Actionable In a preclinical study, Ulixertinib (BVD-523) inhibited Erk signaling in colorectal cancer cells harboring BRAF V600E, resulted in cell cycle arrest in culture and tumor growth inhibition in cell line xenograft models (PMID: 28939558). 28939558
BRAF V600E melanoma sensitive Ulixertinib Preclinical - Cell line xenograft Actionable In a preclinical study, Ulixertinib (BVD-523) inhibited Erk signaling in melanoma cells harboring BRAF V600E, resulted in cell cycle arrest in culture and tumor growth inhibition in cell line xenograft models (PMID: 28939558). 28939558