Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (30242094)
Authors Saadat N, Liu F, Haynes B, Nangia-Makker P, Bao X, Li J, Polin LA, Gupta S, Mao G, Shekhar MP
Title Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy.
URL
Abstract Text The triple-negative breast cancer (TNBC) subtype, regardless of their BRCA1 status, has the poorest outcome compared with other breast cancer subtypes, and currently there are no approved targeted therapies for TNBC. We have previously demonstrated the importance of RAD6-mediated translesion synthesis pathway in TNBC development/progression and chemoresistance, and the potential therapeutic benefit of targeting RAD6 with a RAD6-selective small-molecule inhibitor, SMI#9. To overcome SMI#9 solubility limitations, we recently developed a gold nanoparticle (GNP)-based platform for conjugation and intracellular release of SMI#9, and demonstrated its in vitro cytotoxic activity toward TNBC cells. Here, we characterized the in vivo pharmacokinetic and therapeutic properties of PEGylated GNP-conjugated SMI#9 in BRCA1 wild-type and BRCA1-mutant TNBC xenograft models, and investigated the impact of RAD6 inhibition on TNBC metabolism by 1H-NMR spectroscopy. GNP conjugation allowed the released SMI#9 to achieve higher systemic exposure and longer retention as compared with the unconjugated drug. Systemically administered SMI#9-GNP inhibited the TNBC growth as effectively as intratumorally injected unconjugated SMI#9. Inductively coupled mass spectrometry analysis showed highest GNP concentrations in tumors and liver of SMI#9-GNP and blank-GNP-treated mice; however, tumor growth inhibition occurred only in the SMI#9-GNP-treated group. SMI#9-GNP was tolerated without overt signs of toxicity. SMI#9-induced sensitization was associated with perturbation of a common set of glycolytic pathways in BRCA1 wild-type and BRCA1-mutant TNBC cells. These data reveal novel SMI#9 sensitive markers of metabolic vulnerability for TNBC management and suggest that nanotherapy-mediated RAD6 inhibition offers a promising strategy for TNBC treatment.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
SMI#9-GNP SMI#9-GNP 0 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
SMI#9-GNP SMI#9-GNP is comprised of the RAD6 inhibitor SMI#9 conjugated to gold nanoparticles (GNP), which potentially inhibits cell proliferation, colony formation, and tumor growth (PMID: 30242094).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References