Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (17620426)
Authors Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A, Zawel L, Tran M, Cools J, Gilliland G, Mitsiades C, McMillin DW, Jiang J, Hall-Meyers E, Griffin JD
Title Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells.
Journal Molecular cancer therapeutics
Vol 6
Issue 7
Date 2007 Jul
URL
Abstract Text Members of the inhibitor of apoptosis protein (IAP) family play a role in mediating apoptosis. Studies suggest that these proteins may be a viable target in leukemia because they have been found to be variably expressed in acute leukemias and are associated with chemosensitivity, chemoresistance, disease progression, remission, and patient survival. Another promising therapeutic target, FLT3, is mutated in about one third of acute myelogenous leukemia (AML) patients; promising results have recently been achieved in clinical trials investigating the effects of the protein tyrosine kinase inhibitor PKC412 on AML patients harboring mutations in the FLT3 protein. Of growing concern, however, is the development of drug resistance resulting from the emergence of point mutations in targeted tyrosine kinases used for treatment of acute leukemia patients. One approach to overriding resistance is to combine structurally unrelated inhibitors and/or inhibitors of different signaling pathways. The proapoptotic IAP inhibitor, LBW242, was shown in proliferation studies done in vitro to enhance the killing of PKC412-sensitive and PKC412-resistant cell lines expressing mutant FLT3 when combined with either PKC412 or standard cytotoxic agents (doxorubicin and Ara-c). In addition, in an in vivo imaging assay using bioluminescence as a measure of tumor burden, a total of 12 male NCr-nude mice were treated for 10 days with p.o. administration of vehicle, LBW242 (50 mg/kg/day), PKC412 (40 mg/kg/day), or a combination of LBW242 and PKC412; the lowest tumor burden was observed in the drug combination group. Finally, the combination of LBW242 and PKC412 was sufficient to override stromal-mediated viability signaling conferring resistance to PKC412.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
FLT3 A627T missense unknown FLT3 A627T lies within the protein kinase domain of the Flt3 protein (UniProt.org). A627T has been identified as a drug resistance mutation (PMID: 15374944, PMID: 17620426), but has not been biochemically characterized and therefore, its effect on Flt3 protein function is unknown (PubMed, Dec 2021). Y
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
FLT3 exon 14 ins FLT3 A627T hematologic cancer predicted - resistant Midostaurin Preclinical - Cell culture Actionable In a preclinical study, transformed cells expressing a FLT3-ITD mutation with FLT3 A627T demonstrated resistance to Rydapt (midostaurin) in culture (PMID: 17620426). 17620426