Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (23457004)
Authors Samal K, Zhao P, Kendzicky A, Yco LP, McClung H, Gerner E, Burns M, Bachmann AS, Sholler G
Title AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport.
Journal International journal of cancer
Vol 133
Issue 6
Date 2013 Sep 15
URL
Abstract Text Neuroblastoma (NB) is associated with MYCN oncogene amplification occurring in approximately 30% of NBs and is associated with poor prognosis. MYCN is linked to a number of genes including ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. ODC expression is elevated in many forms of cancer including NB. Alpha-difluoromethylornithine (DFMO), an ODC inhibitor, is currently being used in a Phase I clinical trial for treatment of NB. However, cancer cells treated with DFMO may overcome their polyamine depletion by the uptake of polyamines from extracellular sources. A novel polyamine transport inhibitor, AMXT-1501, has not yet been tested in NB. We propose that inhibiting ODC with DFMO, coupled with polyamine transport inhibition by AMXT-1501 will result in enhanced NB growth inhibition. Single and combination drug treatments were conducted on three NB cell lines. DFMO IC50 values ranged from 20.76 to 33.3 mM, and AMXT-1501 IC50 values ranged from 14.13 to 17.72 µM in NB. The combination treatment resulted in hypophosphorylation of retinoblastoma protein (Rb), suggesting growth inhibition via G1 cell cycle arrest. Increased expression of cleaved PARP and cleaved caspase 3 in combination-treated cells starting at 48 hr suggested apoptosis. The combination treatment depleted intracellular polyamine pools and decreased intracellular ATP, further verifying growth inhibition. Given the current lack of effective therapies for patients with relapsed/refractory NB and the preclinical effectiveness of DFMO with AMXT-1501, this combination treatment provides promising preclinical results. DFMO and AMXT-1501 may be a potential new therapy for children with NB.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
AMXT1501 AMXT1501 inhibits polyamine transport, which may deplete intracellular polyamine pools and enhance growth inhibition by DFMO (PMID: 23457004).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
Unknown unknown neuroblastoma not applicable AMXT1501 + Eflornithine Preclinical - Cell culture Actionable In a preclinical study, AMXT1501 and Eflornithine (DFMO) combination treatment resulted in depletion of intracellular polyamine pools and decreased intracellular ATP, which led to cell cycle arrest and apoptosis in neuroblastoma cell lines in culture (PMID: 23457004). 23457004