Reference Detail

Ref Type Journal Article
PMID (24493623)
Authors Wang HW, Yang SH, Huang GD, Lin JK, Chen WS, Jiang JK, Lan YT, Lin CC, Hwang WL, Tzeng CH, Li AF, Yen CC, Teng HW
Title Temsirolimus enhances the efficacy of cetuximab in colon cancer through a CIP2A-dependent mechanism.
Journal Journal of cancer research and clinical oncology
Vol 140
Issue 4
Date 2014 Apr
URL
Abstract Text A dozen clinical trials examining a combination of temsirolimus and cetuximab in treating metastatic colon cancer are currently underway. We investigated the role of cancerous inhibitor of protein phosphatase 2A (CIP2A) in the synergism between temsirolimus and cetuximab in colon cancer.Five colon cancer cell lines were used for in vitro studies. Signal transduction pathways were assessed by immunoblotting. The synergism between studied drugs was analyzed with combination indexes. Gene silencing was performed using small interfering RNAs. The efficacies of temsirolimus and cetuximab were tested in nude mice with colon cancer xenografts. Transcriptional activity was assessed using a reporter assay. The inhibitors leupeptin, chloroquine, and MG132 were used to assess protein degradation. The association between CIP2A, clinicopathological parameters, and survival was examined by immunohistochemical staining using a tumor tissue microarray.Temsirolimus decreased the resistance of cells to cetuximab by both inhibiting transcription of CIP2A and increasing degradation of CIP2A through the lysosomal-autophagy pathway. The mammalian target of rapamycin (mTOR) protein immunoprecipitated along with CIP2A. Temsirolimus decreased expression of phosphorylated extracellular regulated protein kinase (pErk) and phosphorylated v-akt murine thymoma viral oncogene (pAKT) and decreased the interaction of CIP2A and mTOR in cell lines without the K-ras codon 12 mutation. CIP2A was a prognostic marker only in colon cancer patients with weak expression of pErk or pAKT.Temsirolimus decreases cellular resistance to cetuximab by regulating CIP2A expression in colon cancer cells. Potential biomarkers for CIP2A inhibitors include pErk and pAKT.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
Unknown unknown colon cancer not applicable Cetuximab + Temsirolimus Preclinical - Cell line xenograft Actionable In a preclinical study, Torisel (temsirolimus) increased sensitivity to Erbitux (cetuximab) in cell line xenograft models of colon cancer (PMID: 24493623). 24493623
Unknown unknown colon adenocarcinoma not applicable Cetuximab + Temsirolimus Preclinical Actionable In a preclinical study, Torisel (temsirolimus) decreased resistance to Erbitux (cetuximab) in colon cancer cells (PMID: 24493623). 24493623