Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (31177400)
Authors Li Y, Wang K, Song N, Hou K, Che X, Zhou Y, Liu Y, Zhang J
Title Activation of IGF-1R pathway and NPM-ALK G1269A mutation confer resistance to crizotinib treatment in NPM-ALK positive lymphoma.
Journal Investigational new drugs
Vol 38
Issue 3
Date 2020 Jun
Abstract Text ALK-positive anaplastic large cell lymphoma (ALCL) represents a subset of non-Hodgkin's lymphoma that is treated with crizotinib, a dual ALK/MET inhibitor. Despite the remarkable initial response, ALCLs eventually develop resistance to crizotinib. ALK inhibitor resistance in tumors is a complex and heterogeneous process with multiple underlying mechanisms, including ALK gene amplification, ALK kinase domain mutation, and the activation of various bypass signaling pathways. To overcome resistance, multiple promising next-generation ALK kinase inhibitors and rational combinatorial strategies are being developed. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired crizotinib resistance by exposing a highly sensitive NPM-ALK-positive ALCL cell line to increasing doses of crizotinib until resistance emerged. We found that the NPM-ALK mutation was selected under intermediate-concentration drug stress in resistant clones, accompanied by activation of the IGF-1R pathway. In the crizotinib-resistant ALCL cell model, the IGF-1R pathway was activated, and combined ALK/IGF-1R inhibition improved therapeutic efficacy. Furthermore, we also detected the NPM-ALK G1269A mutation, which had previously been demonstrated to result in decreased affinity for crizotinib, in the resistant cell model. Although crizotinib was ineffective against cells harboring the NPM-ALK G1269A mutation, five structurally different ALK inhibitors, alectinib, ceritinib, TAE684, ASP3026 and AP26113, maintained activity against the resistant cells. Thus, we have shown that second-generation ALK tyrosine kinase inhibitors or IGF-1R inhibitors are effective in treating crizotinib-resistant tumors.


  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"


  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
ASP3026 ASP-3026|ASP 3026 ALK Inhibitor 23 ROS1 Inhibitor 14 ASP3026 inhibits ALK, with activity against ALK fusions and mutations, and ROS1, potentially resulting in decreased viability of tumor cells and reduced tumor growth (PMID: 24419060, PMID: 29491259, PMID: 26964870, PMID: 31177400).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References