Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (18775810)
Authors Gozgit JM, Bebernitz G, Patil P, Ye M, Parmentier J, Wu J, Su N, Wang T, Ioannidis S, Davies A, Huszar D, Zinda M
Title Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2.
Journal The Journal of biological chemistry
Vol 283
Issue 47
Date 2008 Nov 21
URL
Abstract Text The Janus-associated kinase 2 (JAK2) V617F mutation is believed to play a critical role in the pathogenesis of polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. We have characterized a novel small molecule JAK2 inhibitor, AZ960, and used it as a tool to investigate the consequences of JAK2 V617F inhibition in the SET-2 cell line. AZ960 inhibits JAK2 kinase with a K(i) of 0.00045 microm in vitro and treatment of TEL-JAK2 driven Ba/F3 cells with AZ960 blocked STAT5 phosphorylation and potently inhibited cell proliferation (GI(50)=0.025 microm). AZ960 demonstrated selectivity for TEL-JAK2-driven STAT5 phosphorylation and cell proliferation when compared with cell lines driven by similar fusions of the other JAK kinase family members. In the SET-2 human megakaryoblastic cell line, heterozygous for the JAK2 V617F allele, inhibition of JAK2 resulted in decreased STAT3/5 phosphorylation and inhibition of cell proliferation (GI(50)=0.033 microm) predominately through the induction of mitochondrial-mediated apoptosis. We provide evidence that JAK2 inhibition induces apoptosis by direct and indirect regulation of the anti-apoptotic protein BCL-xL. Inhibition of JAK2 blocked BCL-XL mRNA expression resulting in a reduction of BCL-xL protein levels. Additionally, inhibition of JAK2 resulted in decreased PIM1 and PIM2 mRNA expression. Decreased PIM1 mRNA corresponded with a decrease in Pim1 protein levels and inhibition of BAD phosphorylation at Ser(112). Finally, small interfering RNA-mediated suppression of BCL-xL resulted in apoptotic cell death similar to the phenotype observed following JAK2 inhibition. These results suggest a model in which JAK2 promotes cell survival by signaling through the Pim/BAD/BCL-xL pathway.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
JAK2 V617F acute megakaryocytic leukemia sensitive AZ960 Preclinical - Cell culture Actionable In a preclinical study, AZ960 treatment induced apoptosis, decreased Stat3/5 phosphorylation and downstream signaling, and inhibited proliferation of a megakaryoblastic leukemia cell line harboring JAK2 V617F in culture (PMID: 18775810). 18775810