Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (26168818)
Authors Pierpaoli E, Damiani E, Orlando F, Lucarini G, Bartozzi B, Lombardi P, Salvatore C, Geroni C, Donati A, Provinciali M
Title Antiangiogenic and antitumor activities of berberine derivative NAX014 compound in a transgenic murine model of HER2/neu-positive mammary carcinoma.
Journal Carcinogenesis
Vol 36
Issue 10
Date 2015 Oct
Abstract Text Berberine (BBR) is a natural isoquinoline alkaloid with proven antiangiogenic and anticancer activities. We recently demonstrated that BBR and its synthetic derivative 13-(4-chlorophenylethyl)berberine iodide, NAX014, exert antiproliferative activity against HER2-overexpressing breast cancer cells, inducing apoptosis, modulating the expression of cell cycle checkpoint molecules involved in cell senescence, and reducing both HER2 expression and phosphorylation on tumor cells. In this study, we examined the anticancer properties of BBR and NAX014 in a transgenic mouse model which spontaneously develops HER2-positive mammary tumors. Repeated intraperitoneal injections of a safety dose (2.5mg/kg) of NAX014 delayed the development of tumors, reducing both the number and size of tumor masses. In vivo sidestream dark field videomicroscopy revealed a significant lower vessel density in mammary tumors from NAX014-treated mice in comparison with the control group. Immunohistochemical evaluation using CD34 antibody confirmed the reduced vessel density in NAX014 group. Statistically significant increase of senescence associated β-galactosidase and p16 expression, and reduced expression of heparanase were observed in tumors from NAX014-treated mice than in tumors from control animals. Finally, NAX014 treatment decreased the level of perforine and granzyme mRNA in mammary tumors. Berberine did not show any statistically significant modulation in comparison with control mice. The results of the present study indicate that NAX014 is more effective than BBR in exerting anticancer activity delaying the development of mammary tumors in mice transgenic for the HER-2/neu oncogene. The antitumor efficacy of NAX014 is mainly related to its effect on tumor vascular network and on induction of tumor cell senescence.


  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"


  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
NAX014 NAX014 1 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
NAX014 NAX014 is a synthetic derivative of berberine, which has the potential to induce apoptotic activity and decrease tumor growth (PMID: 24000115, PMID: 26168818).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
ERBB2 over exp Her2-receptor positive breast cancer sensitive NAX014 Preclinical Actionable In a preclinical study, NAX014 induced cellular senescence, prevented tumor growth, and decreased tumor volume in a Her2 positive breast cancer mouse model (PMID: 26168818). 26168818