Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (24788099)
Authors Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, Yasui A
Title SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability.
Journal Cancer research
Vol 74
Issue 9
Date 2014 May 01
URL
Abstract Text The SWI/SNF chromatin-remodeling family contains various protein complexes, which regulate gene expression during cellular development and influence DNA damage response in an ATP- and complex-dependent manner, of which details remain elusive. Recent human genome sequencing of various cancer cells revealed frequent mutations in SWI/SNF factors, especially ARID1A, a variant subunit in the BRG1-associated factor (BAF) complex of the SWI/SNF family. We combined live-cell analysis and gene-suppression experiments to show that suppression of either ARID1A or its paralog ARID1B led to reduced nonhomologous end joining activity of DNA double-strand breaks (DSB), decreased accumulation of KU70/KU80 proteins at DSB, and sensitivity to ionizing radiation, as well as to cisplatin and UV. Thus, in contrast to transcriptional regulation, both ARID1 proteins are required for cellular resistance to various types of DNA damage, including DSB. The suppression of other SWI/SNF factors, namely SNF5, BAF60a, BAF60c, BAF155, or BAF170, exhibits a similar phenotype. Of these factors, ARID1A, ARID1B, SNF5, and BAF60c are necessary for the immediate recruitment of the ATPase subunit of the SWI/SNF complex to DSB, arguing that both ARID1 proteins facilitate the damage response of the complex. Finally, we found interdependent protein stability among the SWI/SNF factors, suggesting their direct interaction within the complex and the reason why multiple factors are frequently lost in parallel in cancer cells. Taken together, we show that cancer cells lacking in the expression of certain SWI/SNF factors, including ARID1A, are deficient in DNA repair and potentially vulnerable to DNA damage.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References