Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (26351323)
Authors Davies BR, Guan N, Logie A, Crafter C, Hanson L, Jacobs V, James N, Dudley P, Jacques K, Ladd B, D'Cruz CM, Zinda M, Lindemann J, Kodaira M, Tamura K, Jenkins EL
Title Tumors with AKT1E17K Mutations Are Rational Targets for Single Agent or Combination Therapy with AKT Inhibitors.
URL
Abstract Text AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is not known. Expression of exogenous copies of AKT1(E17K) in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1(E17K) mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1(E17K) mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1(E17K) and FGFR3(Y373C) mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1(E17K) mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References