Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (14534538)
Authors Agazie YM, Movilla N, Ischenko I, Hayman MJ
Title The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3.
Journal Oncogene
Vol 22
Issue 44
Date 2003 Oct 9
URL
Abstract Text Receptor tyrosine kinases (RTKs) such as the fibroblast growth factor receptor (FGFR) and the epidermal growth factor receptor are overexpressed in a variety of cancers. In addition to overexpression, the FGFRs are found mutated in some cancers. The Src homology 2 domain-containing phosphotyrosine phosphatase (SHP2) is a critical mediator of RTK signaling, but its role in oncogenic RTK-induced cell transformation and cancer development is largely unknown. In the current report, we demonstrate that constitutively activated FGFR3 (K/E-FR3) transforms NIH-3T3 cells, and that SHP2 is a critical mediator of this transformation. Infection of K/E-FR3-transformed 3T3 cells with a retrovirus carrying a dominant-negative mutant of SHP2 (C/S-SHP2) retarded cell growth, reversed the transformation phenotype and inhibited focus-forming ability. Furthermore, treatment of K/E-FR3-transformed NIH-3T3 cells with PD98059 or LY294002, specific inhibitors of MEK and PI3K, respectively, inhibited focus formation. Biochemical analysis showed that K/E-FR3 activates the Ras-ERK and the PI3K signaling pathways, and that the C/S SHP2 mutant suppressed this effect via competitive displacement of interaction of the endogenous SHP2 with FRS2. However, the C/S SHP2 protein did not show any effect on receptor autophosphorylation, FRS2 tyrosine phosphorylation or interaction of Grb2 with K/E-FR3 or FRS2. Together, the results show that K/E-FR3 is transforming and that the Ras-ERK and the PI3K-Akt signaling pathways, which are positively regulated by SHP2, are important for K/E-FR3-induced transformation.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
FGFR3 K650E Advanced Solid Tumor sensitive PD98059 Preclinical Actionable In a preclinical study, PD98059 inhibited FGFR3 K650E-induced transformation of cells in culture (PMID: 14534538). 14534538