Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (26228206)
Authors Vena F, Li Causi E, Rodriguez-Justo M, Goodstal S, Hagemann T, Hartley JA, Hochhauser D
Title The MEK1/2 Inhibitor Pimasertib Enhances Gemcitabine Efficacy in Pancreatic Cancer Models by Altering Ribonucleotide Reductase Subunit-1 (RRM1).
Journal Clinical cancer research : an official journal of the American Association for Cancer Research
Vol 21
Issue 24
Date 2015 Dec 15
URL
Abstract Text Gemcitabine, a nucleoside analogue, is an important treatment for locally advanced and metastatic pancreatic ductal adenocarcinoma (PDAC) but provides only modest survival benefit. Targeting downstream effectors of the RAS/ERK signaling pathway by direct inhibition of MEK1/2 proteins is a promising therapeutic strategy, as aberrant activation of this pathway occurs frequently in PDAC. In this study, the ability of pimasertib, a selective allosteric MEK1/2 inhibitor, to enhance gemcitabine efficacy was tested and the molecular mechanism of their interaction was investigated.Cell survival and apoptosis were assessed by MTT and Caspase 3/7 Glo assays in human pancreatic cancer cell lines. Protein expression was detected by immunoblotting. The in vivo sensitivity of gemcitabine with pimasertib was evaluated in an orthotopic model of pancreatic tumor.Synergistic activity was observed when gemcitabine was combined sequentially with pimasertib, in human pancreatic cancer cells. In particular, pimasertib reduced ribonucleotide reductase subunit 1 (RRM1) protein, and this was associated with sensitivity to gemcitabine. Pretreatment with MG132 impaired reduction of RRM1 protein induced by pimasertib, suggesting that RRM1 is degraded posttranslationally. Immunoprecipitation indicated enhanced MDM2-mediated polyubiquitination of RRM1 through Lys-48-mediated linkage following pimasertib treatment, an effect mediated, in part, by AKT. Finally, the combination treatment with pimasertib and gemcitabine caused significant tumor growth delays in an orthotopic pancreatic cancer model, with RRM1 downregulation in pimasertib-treated mice.These results confirm an important role of RRM1 in gemcitabine response and indicate MEK as a potential target to sensitize gemcitabine therapy for PDAC. Clin Cancer Res; 21(24); 5563-77. ©2015 AACR.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
Unknown unknown pancreatic cancer not applicable Gemcitabine + Pimasertib Preclinical Actionable In a preclinical study, treatment with Pimasertib (MSC1936369B) followed by Gemzar (gemcitabine) resulted in enhanced inhibition of proliferation and induction of apoptosis in pancreatic cell lines in culture (PMID: 26228206). 26228206