Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (17973266)
Authors Yuan P, Wang L, Wei D, Zhang J, Jia Z, Li Q, Le X, Wang H, Yao J, Xie K
Title Therapeutic inhibition of Sp1 expression in growing tumors by mithramycin a correlates directly with potent antiangiogenic effects on human pancreatic cancer.
URL
Abstract Text Human pancreatic cancer over expresses the transcription factor Sp1. However, the role of Sp1 in pancreatic cancer angiogenesis and its use as target for antiangiogenic therapy remain unexplored.Archived human pancreatic cancer specimens were used to assess gene expression and microvessel density (MVD) status by immunohistochemistry: Small-interfering RNA (siRNA) was used to determine the impact of altered Sp1 expression on tumor growth and angiogenesis, and mithramycin A (MIT) was used to evaluate Sp1-targeted antiangiogenic treatment of human pancreatic cancer in animal models.The expression level of Sp1 was correlated directly with the MVD status (P < .001) and the expression level of vascular endothelial growth factor (VEGF) (P < .05). Knockdown of Sp1 expression did not affect the growth of pancreatic cancer cells in vitro but inhibited their growth and metastasis in mouse models. This antitumor activity was consistent with the in vitro and in vivo antiangiogenic activity resulting from Sp1 knockdown. Subcutaneous and intraperitoneal injection of MIT significantly suppressed the growth of human pancreatic cancer in mouse models. This tumor suppression was correlated with the suppression of Sp1 expression in growing tumors but not in normal tissues. Moreover, treatment with MIT reduced tumor MVD, which was consistent with the down-regulation of VEGF, platelet-derived growth factor, and epidermal growth factor receptor.Both clinical and experimental evidence indicated that Sp1 is a critical regulator of human pancreatic cancer angiogenesis and the antitumor activity of MIT is a result, at least in part, of the suppression of Sp1 expression and consequent down-regulation the downstream targets of Sp1 that are key to angiogenesis.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References