Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (25652455)
Authors Parkin B, Ouillette P, Yildiz M, Saiya-Cork K, Shedden K, Malek SN
Title Integrated genomic profiling, therapy response, and survival in adult acute myelogenous leukemia.
URL
Abstract Text Recurrent gene mutations, chromosomal translocations, and acquired genomic copy number aberrations (aCNA) have been variously associated with acute myelogenous leukemia (AML) patient outcome. However, knowledge of the co-occurrence of such lesions and the relative influence of different types of genomic alterations on clinical outcomes in AML is still evolving.We performed SNP 6.0 array-based genomic profiling of aCNA/copy neutral loss-of-heterozygosity (cnLOH) along with sequence analysis of 13 commonly mutated genes on purified leukemic blast DNA from 156 prospectively enrolled non-FAB-M3 AML patients across the clinical spectrum of de novo, secondary, and therapy-related AML.TP53 and RUNX1 mutations are strongly associated with the presence of SNP-A-based aCNA/cnLOH, while FLT3 and NPM1 mutations are strongly associated with the absence of aCNA/cnLOH. The presence of mutations in RUNX1, ASXL1, and TP53, elevated SNP-A-based genomic complexity, and specific recurrent aCNAs predicted failure to achieve a complete response to induction chemotherapy. The presence of ≥1 aCNA/cnLOH and higher thresholds predicted for poor long-term survival irrespective of TP53 status, and the presence of ≥1 aCNA/cnLOH added negative prognostic information to knowledge of mutations in TET2, IDH1, NPM1, DNMT3A, and RUNX1. Results of multivariate analyses support a dominant role for TP53 mutations and a role for elevated genomic complexity as predictors of short survival in AML.Integrated genomic profiling of a clinically relevant adult AML cohort identified genomic aberrations most associated with SNP-A-based genomic complexity, resistance to intensive induction therapies, and shortened overall survival. Identifying SNP-A-based lesions adds prognostic value to the status of several recurrently mutated genes.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References