Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (26861247)
Authors Xu L, Luo J, Jin R, Yue Z, Sun P, Yang Z, Yang X, Wan W, Zhang J, Li S, Liu M, Xiao J
Title Bortezomib Inhibits Giant Cell Tumor of Bone through Induction of Cell Apoptosis and Inhibition of Osteoclast Recruitment, Giant Cell Formation, and Bone Resorption.
Journal Molecular cancer therapeutics
Vol 15
Issue 5
Date 2016 May
Abstract Text Giant cell tumor of bone (GCTB) is a rare and highly osteolytic bone tumor that usually leads to an extensive bone lesion. The purpose of this study was to discover novel therapeutic targets and identify potential agents for treating GCTB. After screening the serum cytokine profiles in 52 GCTB patients and 10 normal individuals using the ELISA assay, we found that NF-κB signaling-related cytokines, including TNFα, MCP-1, IL1α, and IL17A, were significantly increased in GCTB patients. The results were confirmed by IHC that the expression and activity of p65 were significantly increased in GCTB patients. Moreover, all of the NF-κB inhibitors tested suppressed GCTB cell growth, and bortezomib (Velcade), a well-known proteasome inhibitor, was the most potent inhibitor in blocking GCTB cells growth. Our results showed that bortezomib not only induced GCTB neoplastic stromal cell (NSC) apoptosis, but also suppressed GCTB NSC-induced giant cell differentiation, formation, and resorption. Moreover, bortezomib specifically suppressed GCTB NSC-induced preosteoclast recruitment. Furthermore, bortezomib ameliorated GCTB cell-induced bone destruction in vivo As a result, bortezomib suppressed NF-κB-regulated gene expression in GCTB NSC apoptosis, monocyte migration, angiogenesis, and osteoclastogenesis. Particularly, the inhibitory effects of bortezomib were much better than zoledronic acid, a drug currently used in treating GCTB, in our in vitro experimental paradigms. Together, our results demonstrated that NF-κB signaling pathway is highly activated in GCTB, and bortezomib could suppress GCTB and osteolysis in vivo and in vitro, indicating that bortezomib is a potential agent in the treatment of GCTB. Mol Cancer Ther; 15(5); 854-65. ©2016 AACR.


  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"


  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
Unknown unknown bone giant cell tumor not applicable Bortezomib Preclinical Actionable In a preclinical study, Velcade (Bortezomib) treatment resulted in decreased NF-kappaB signaling, increased apoptosis, and decreased growth of bone giant cell tumor cells in culture, and decreased bone giant cell tumor cell-mediated bone destruction in mouse models (PMID: 26861247). 26861247