Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (24165158)
Authors Rho JK, Choi YJ, Kim SY, Kim TW, Choi EK, Yoon SJ, Park BM, Park E, Bae JH, Choi CM, Lee JC
Title MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation.
Journal Cancer research
Vol 74
Issue 1
Date 2014 Jan 01
URL
Abstract Text In non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations, acquired resistance to EGFR-tyrosine kinase inhibitors (EGFR-TKI) can occur through a generation of bypass signals such as MET or AXL activation. In this study, we investigated the antitumor activity of NPS-1034, a newly developed drug that targets both MET and AXL, in NSCLC cells with acquired resistance to gefitinib or erlotinib (HCC827/GR and HCC827/ER, respectively). Characterization of H820 cells and evaluation of NPS-1034 efficacy in these cells were also performed. The resistance of HCC827/GR was mediated by MET activation, whereas AXL activation led to resistance in HCC827/ER. The combination of gefitinib or erlotinib with NPS-1034 synergistically inhibited cell proliferation and induced cell death in both resistant cell lines. Accordingly, suppression of Akt was noted only in the presence of treatment with both drugs. NPS-1034 was also effective in xenograft mouse models of HCC827/GR. Although the H820 cell line was reported previously to have T790M and MET amplification, we discovered that AXL was also activated in this cell line. There were no antitumor effects of siRNA or inhibitors specific for EGFR or MET, whereas combined treatment with AXL siRNA or NPS-1034 and EGFR-TKIs controlled H820 cells, suggesting that AXL is the main signal responsible for resistance. In addition, NPS-1034 inhibited cell proliferation as well as ROS1 activity in HCC78 cells with ROS1 rearrangement. Our results establish the efficacy of NPS-1034 in NSCLC cells rendered resistant to EGFR-TKIs because of MET or AXL activation or ROS1 rearrangement.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
NPS-1034 AXL Inhibitor 28 MET Inhibitor 55 NPS-1034 inhibits AXL and MET, including mutant forms of MET, as well as other kinases, which potentially results in decreased tumor cell growth and may overcome MET or AXL mediated drug resistance (PMID: 24173966, PMID: 24165158).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
ROS1 rearrange lung non-small cell carcinoma sensitive NPS-1034 Preclinical - Cell culture Actionable In a preclinical study, NPS-1034 inhibited ROS1 activity and proliferation of a non-small cell lung cancer cell line harboring a ROS1 rearrangement in culture (PMID: 24165158). 24165158