Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (19706763)
Authors Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, Hamatake R, Miner JN, Quart B
Title RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer.
URL
Abstract Text The RAS-RAF-mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway provides numerous opportunities for targeted oncology therapeutics. In particular, the MEK enzyme is attractive due to high selectivity for its target ERK and the central role that activated ERK plays in driving cell proliferation. The structural, pharmacologic, and pharmacokinetic properties of RDEA119/BAY 869766, an allosteric MEK inhibitor, are presented. RDEA119/BAY 869766 is selectively bound directly to an allosteric pocket in the MEK1/2 enzymes. This compound is highly efficacious at inhibiting cell proliferation in several tumor cell lines in vitro. In vivo, RDEA119/BAY 869766 exhibits potent activity in xenograft models of melanoma, colon, and epidermal carcinoma. RDEA119/BAY 869766 exhibits complete suppression of ERK phosphorylation at fully efficacious doses in mice. RDEA119/BAY 869766 shows a tissue selectivity that reduces its potential for central nervous system-related side effects. Using pharmacokinetic and pharmacodynamic data, we show that maintaining adequate MEK inhibition throughout the dosing interval is likely more important than achieving high peak levels because greater efficacy was achieved with more frequent but lower dosing. Based on its longer half-life in humans than in mice, RDEA119/BAY 869766 has the potential for use as a once- or twice-daily oral treatment for cancer. RDEA119/BAY 869766, an exquisitely selective, orally available MEK inhibitor, has been selected for clinical development because of its potency and favorable pharmacokinetic profile.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
BRAF V600E melanoma sensitive Refametinib Preclinical - Cell line xenograft Actionable In a preclinical study, Refametinib (BAY86-9766) inhibited growth of melanoma cell lines harboring BRAF V600E in culture and suppressed tumor growth in cell line xenograft models (PMID: 19706763). 19706763
BRAF V600E colorectal cancer sensitive Refametinib Preclinical Actionable In a preclinical study, Refametinib (BAY86-9766) inhibited growth of colorectal cancer cell lines harboring BRAF V600E in culture and suppressed tumor growth in cell line xenograft models (PMID: 19706763). 19706763