Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (20515948)
Authors Kremmidiotis G, Leske AF, Lavranos TC, Beaumont D, Gasic J, Hall A, O'Callaghan M, Matthews CA, Flynn B
Title BNC105: a novel tubulin polymerization inhibitor that selectively disrupts tumor vasculature and displays single-agent antitumor efficacy.
URL
Abstract Text Vascular disruption agents (VDA) cause occlusion of tumor vasculature, resulting in hypoxia-driven tumor cell necrosis. Tumor vascular disruption is a therapeutic strategy of great potential; however, VDAs currently under development display a narrow therapeutic margin, with cardiovascular toxicity posing a dose-limiting obstacle. Discovery of new VDAs, which display a wider therapeutic margin, may allow attainment of improved clinical outcomes. To identify such compounds, we used an in vitro selectivity screening approach that exploits the fact that tumor endothelial cells are in a constant state of activation and angiogenesis and do not undergo senescence. Our effort yielded the compound BNC105. This compound acts as a tubulin polymerization inhibitor and displays 80-fold higher potency against endothelial cells that are actively proliferating or are engaged in the formation of in vitro capillaries compared with nonproliferating endothelial cells or endothelium found in stable capillaries. This selectivity was not observed with CA4, a VDA currently under evaluation in phase III clinical trials. BNC105 is more potent and offers a wider therapeutic window. CA4 produces 90% vascular disruption at its no observed adverse event level (NOAEL), whereas BNC105 causes 95% vascular disruption at 1/8th of its NOAEL. Tissue distribution analysis of BNC105 in tumor-bearing mice showed that while the drug is cleared from all tissues 24 hours after administration, it is still present at high concentrations within the solid tumor mass. Furthermore, BNC105 treatment causes tumor regressions with complete tumor clearance in 20% of treated animals.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
BNC105P BNC105P 0 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
BNC105P BNC 105P|BNC 105P BNC105P is a prodrug that upon intracellular conversion to BNC105 selectively inhibits tubulin polymerization, which potentially interferes with tumor vasculature, and may induce tumor cell necrosis and reduce tumor growth (PMID: 20515948).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References