Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (36456601)
Authors Miao XY, Wu H, Ye BC, Yi QW, Lin FN, Wang YL, Ren CL, Jiang YF, Li A
Title Non‑small cell lung cancer carrying PBRM1 mutation suggests an immunologically cold phenotype leading to immunotherapy failure even with high TMB.
URL
Abstract Text High tumor mutation load (TMB-H, or TMB ≥ 10) has been approved by the U.S. FDA as a biomarker for pembrolizumab treatment of solid tumors, including non‑small cell lung cancer (NSCLC). Patients with cancer who have immunotherapy-resistant gene mutations cannot achieve clinical benefits even in TMB-H. In this study, we aimed to identify gene mutations associated with immunotherapy resistance and further informed mechanisms in NSCLC. A combined cohort of 350 immune checkpoint blockade-treated patients from Memorial Sloan Kettering Cancer Center (MSKCC) was used to identify genes whose mutations could negatively influence immunotherapy efficacy. An external NSCLC cohort for which profession-free survival (PFS) data were available was used for independent validation. CIBERSORT algorithms were used to characterize tumor immune infiltrating patterns. Immunogenomic features were analysed in the TCGA NSCLC cohort. We observed that PBRM1 mutations independently and negatively influence immunotherapy efficacy. Survival analysis showed that the overall survival (OS) and PFS of patients with PBRM1 mutations (MT) were significantly shorter than the wild type (WT). Moreover, compared with PBRM1-WT/TMB-H group, OS was worse in the PBRM1-MT/TMB-H group. Notably, in patients with TMB-H/PBRM1-MT, it was equal to that in the low-TMB group. The CIBERSORT algorithm further confirmed that the immune infiltration abundance of CD8+ T cells and activated CD4+ memory T was significantly lower in the MT group. Immunogenomic differences were observed in terms of immune signatures, T-cell receptor repertoire, and immune-related genes between WT and MT groups. Nevertheless, we noticed an inverse relationship, given that MT tumors had a higher TMB than the WT group in MSKCC and TCGA cohort. In conclusion, our study revealed that NSCLC with PBRM1 mutation might be an immunologically cold phenotype and exhibited immunotherapy resistance. NSCLC with PBRM1 mutation might be misclassified as immunoresponsive based on TMB.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References