Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (22167207)
Authors Poljakova J, Hrebackova J, Dvorakova M, Moserova M, Eckschlager T, Hrabeta J, Göttlicherova M, Kopejtkova B, Frei E, Kizek R, Stiborova M
Title Anticancer agent ellipticine combined with histone deacetylase inhibitors, valproic acid and trichostatin A, is an effective DNA damage strategy in human neuroblastoma.
URL
Abstract Text Valproic acid (VPA) and trichostatin A (TSA) exert antitumor activity as histone deacetylase inhibitors, whereas ellipticine action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of cytochrome P450 (CYP)- and peroxidase-mediated covalent DNA adducts. This is the first report on the molecular mechanism of combined treatment of human neuroblastoma UKF-NB-3 and UKF-NB-4 cells with these compounds.HPLC with UV detection was employed for the separation and characterization of ellipticine metabolites formed by microsomes and peroxidases. Covalent DNA modifications by ellipticine in neuroblastoma cells and in incubations with microsomes and peroxidases were detected by 32P-postlabeling. Expression of CYP enzymes, peroxidases and cytochrome b5 was examined by Western blot.The cytotoxicity of ellipticine to neuroblastomas was increased by pre-treating these cells with VPA or TSA. A higher sensitivity of cells to ellipticine correlated with an increase in formation of covalent ellipticine-derived DNA adducts in these cells. To evaluate the mechanisms of this finding, we investigated the modulation by VPA and TSA of CYP- and peroxidase-mediated ellipticine-derived DNA adduct formation in vitro. The effects of ellipticine in the presence of VPA and TSA on expression of CYPs and peroxidases relevant for ellipticine activation and levels of cytochrome b5 and P-glycoprotein in neuroblastoma cells were also investigated. Based on these studies, we attribute most of the enhancing effects of VPA and TSA on ellipticine cytotoxicity to enhanced ellipticine-DNA adduct formation caused by an increase in levels of cytochrome b5, CYP3A4 and CYP1A1 in neuroblastoma cells. A lower sensitivity of UKF-NB-4 cells to combined effects of ellipticine with VPA and TSA than of UKF-NB-3 cells is also attributable to high levels of P-glycoprotein expressed in this cell line.The results found here warrant further studies and may help in the design of new protocols geared to the treatment of high risk neuroblastomas.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References