Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (27196762)
Authors Calgani A, Vignaroli G, Zamperini C, Coniglio F, Festuccia C, Di Cesare E, Gravina GL, Mattei C, Vitale F, Schenone S, Botta M, Angelucci A
Title Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells.
URL
Abstract Text Glioblastoma cells efficiently interact with and infiltrate the surrounding normal tissue, rendering surgical resection and adjuvant chemo/radiotherapy ineffective. New therapeutic targets, able to interfere with glioblastoma's capacity to synergize with normal brain tissue, are currently under investigation. The compound Si306, a pyrazolo[3,4-d]pyrimidine derivative, selected for its favorable activity against SRC, was tested in vitro and in vivo on glioblastoma cell lines. In vivo, combination treatment with Si306 and radiotherapy was strongly active in reducing U-87 xenograft growth with respect to control and single treatments. The histology revealed a significant difference in the stromal compartment of tumoral tissue derived from control or radiotherapy-treated samples with respect to Si306-treated samples, showing in the latter a reduced presence of collagen and α-SMA-positive cells. This effect was paralleled in vitro by the capacity of Si306 to interfere with myofibroblastic differentiation of normal fibroblasts induced by U-87 cells. In the presence of Si306, TGF-β released by U-87 cells, mainly in hypoxia, was ineffective in upregulating α-SMA and β-PDGFR in fibroblasts. Si306 efficiently reached the brain and significantly prolonged the survival of mice orthotopically injected with U-87 cells. Drugs that target SRC could represent an effective therapeutic strategy in glioblastoma, able to block positive paracrine loop with stromal cells based on the β-PDGFR axis and the formation of a tumor-promoting microenvironment. This approach could be important in combination with conventional treatments in the effort to reduce tumor resistance to therapy. Mol Cancer Ther; 15(7); 1535-44. ©2016 AACR.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Si306 Si306 0 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
Si306 SRC Inhibitor 31 Si306 inhibits SRC, which may result in decreased tumor cell growth (PMID: 27196762, PMID: 32545852).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References