Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (23085766)
Authors Gokmen-Polar Y, Liu Y, Toroni RA, Sanders KL, Mehta R, Badve S, Rommel C, Sledge GW Jr
Title Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models.
Journal Breast cancer research and treatment
Vol 136
Issue 3
Date 2012 Dec
URL
Abstract Text Aberrant activation of the mammalian target of rapamycin (mTOR) signaling plays an important role in breast cancer progression and represents a potential therapeutic target for breast cancer. In this study, we report the impact of the investigational drug MLN0128, a potent and selective small molecule active-site TORC1/2 kinase inhibitor, on tumor growth and metastasis using human breast cancer xenograft models. We assessed in vitro antiproliferative activity of MLN0128 in a panel of breast cancer cell lines. We next evaluated the impact of MLN0128 on tumor growth, angiogenesis and metastasis using mammary fat pad xenograft models of a non-VEGF (ML20) and a VEGF-driven (MV165) MCF-7 sublines harboring PIK3CA mutations. MLN0128 potently inhibited cell proliferation in various breast cancer cell lines harboring PIK3CA (IC(50): 1.5-53 nM), PTEN (IC(50): 1-149 nM), KRAS, and/or BRAF mutations (IC(50): 13-162 nM), and in human endothelial cells (IC(50): 33-40 nM) in vitro. In vivo, MLN0128 decreased primary tumor growth significantly in both non-VEGF (ML20; p = 0.05) and VEGF-driven MCF-7 (MV165; p = 0.014) xenograft models. MLN0128 decreased the phosphorylation of Akt, S6, 4E-BP1, and NDRG1 in both models. In contrast, rapamycin increased Akt activity and failed to reduce the phosphorylation of 4E-BP1, PRAS40, and NDRG1. VEGF-induced lung metastasis in MV165 is inhibited by MLN0128 and rapamycin. In conclusion, MLN0128 inhibits TORC1/2-dependent signaling in preclinical models of breast cancer. MLN0128 appears to be superior in blocking mTORC1/2 signaling in contrast to rapamycin. Our findings support the clinical research of MLN0128 in patients with breast cancer and metastasis.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
PIK3CA mutant breast cancer sensitive Sapanisertib Preclinical Actionable In a preclinical study, Sapanisertib (MLN0128) demonstrated efficacy in PIK3CA mutant breast cancer xenograft models (PMID: 23085766). 23085766