Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (25957812)
Authors Woan KV, Lienlaf M, Perez-Villaroel P, Lee C, Cheng F, Knox T, Woods DM, Barrios K, Powers J, Sahakian E, Wang HW, Canales J, Marante D, Smalley KS, Bergman J, Seto E, Kozikowski A, Pinilla-Ibarz J, Sarnaik A, Celis E, Weber J, Sotomayor EM, Villagra A
Title Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation.
Journal Molecular oncology
Vol 9
Issue 7
Date 2015 Aug
URL
Abstract Text The median survival for metastatic melanoma is in the realm of 8-16 months and there are few therapies that offer significant improvement in overall survival. One of the recent advances in cancer treatment focuses on epigenetic modifiers to alter the survivability and immunogenicity of cancer cells. Our group and others have previously demonstrated that pan-HDAC inhibitors induce apoptosis, cell cycle arrest and changes in the immunogenicity of melanoma cells. Here we interrogated specific HDACs which may be responsible for this effect. We found that both genetic abrogation and pharmacologic inhibition of HDAC6 decreases in vitro proliferation and induces G1 arrest of melanoma cell lines without inducing apoptosis. Moreover, targeting this molecule led to an important upregulation in the expression of tumor associated antigens and MHC class I, suggesting a potential improvement in the immunogenicity of these cells. Of note, this anti-melanoma activity was operative regardless of mutational status of the cells. These effects translated into a pronounced delay of in vivo melanoma tumor growth which was, at least in part, dependent on intact immunity as evidenced by the restoration of tumor growth after CD4+ and CD8+ depletion. Given our findings, we provide the initial rationale for the further development of selective HDAC6 inhibitors as potential therapeutic anti-melanoma agents.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Tubastatin A Tubastatin A 2 0
Drug Name Trade Name Synonyms Drug Classes Drug Description
Tubastatin A HDAC Inhibitor 38 Tubastatin A inhibits HDAC6, which results in decreased tumor cell proliferation (PMID: 25957812, PMID: 32435374).
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
NRAS mutant melanoma sensitive Tubastatin A Preclinical Actionable In a preclinical study, Tubastatin A inhibited proliferation of NRAS mutant melanoma cell lines in culture (PMID: 25957812). 25957812
BRAF mutant melanoma sensitive Tubastatin A Preclinical Actionable In a preclinical study, Tubastatin A inhibited proliferation of BRAF mutant melanoma cell lines in culture (PMID: 25957812). 25957812