Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (22705984)
Authors Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, Chong SC, Ong WS, Tay K, Tao M, Quek R, Loong S, Yeoh KW, Yap SP, Lee KA, Lim LC, Tan D, Goh C, Cutcutache I, Yu W, Ng CC, Rajasegaran V, Heng HL, Gan A, Ong CK, Rozen S, Tan P, Teh BT, Lim ST
Title Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma.
Journal Cancer discovery
Vol 2
Issue 7
Date 2012 Jul
URL
Abstract Text The molecular pathogenesis of natural killer/T-cell lymphoma (NKTCL) is not well understood. We conducted whole-exome sequencing and identified Janus kinase 3 (JAK3) somatic-activating mutations (A572V and A573V) in 2 of 4 patients with NKTCLs. Further validation of the prevalence of JAK3 mutations was determined by Sanger sequencing and high-resolution melt (HRM) analysis in an additional 61 cases. In total, 23 of 65 (35.4%) cases harbored JAK3 mutations. Functional characterization of the JAK3 mutations support its involvement in cytokine-independent JAK/STAT constitutive activation leading to increased cell growth. Moreover, treatment of both JAK3-mutant and wild-type NKTCL cell lines with a novel pan-JAK inhibitor, CP-690550, resulted in dose-dependent reduction of phosphorylated STAT5, reduced cell viability, and increased apoptosis. Hence, targeting the deregulated JAK/STAT pathway could be a promising therapy for patients with NKTCLs.Gene mutations causing NKTCL have not been fully identified. Through exome sequencing, we identified activating mutations of JAK3 that may play a significant role in the pathogenesis of NKTCLs. Our findings have important implications for the management of patients with NKTCLs.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
JAK3 A572V missense gain of function JAK3 A572V lies within the protein kinase domain 1 of the Jak3 protein (UniProt.org). A572V confers a gain of function to the Jak3 protein, as demonstrated by increased Jak3 autophosphorylation (PMID: 29046866), constitutive phosphorylation of Jak3 and activation of downstream Stat5 (PMID: 22705984), and leads to cytokine-independent proliferation of cultured cells (PMID: 22705984, PMID: 28284718).
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
JAK3 A572V mature T-cell and NK-cell lymphoma sensitive Tofacitinib Preclinical Actionable In a preclinical study, Xeljanz (tofacitinib), a pan-JAK inhibitor, reduced cell viability and increased apoptosis in a JAK3 A572V mutant natural killer/T-cell lymphoma cell line (PMID: 22705984). 22705984