Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (38438731)
Authors Subbiah V, Gouda MA, Iorgulescu JB, Dadu R, Patel K, Sherman S, Cabanillas M, Hu M, Castellanos LE, Amini B, Meric-Bernstam F, Shen T, Wu J
Title Adaptive Darwinian off-target resistance mechanisms to selective RET inhibition in RET driven cancer.
Abstract Text Patients treated with RET protein tyrosine kinase inhibitors (TKIs) selpercatinib or pralsetinib develop RET TKI resistance by secondary RET mutations or alterative oncogenes, of which alterative oncogenes pose a greater challenge for disease management because of multiple potential mechanisms and the unclear tolerability of drug combinations. A patient with metastatic medullary thyroid carcinoma (MTC) harboring a RET activation loop D898_E901del mutation was treated with selpercatinib. Molecular alterations were monitored with tissue biopsies and cfDNA during the treatment. The selpercatinib-responsive MTC progressed with an acquired ETV6::NTRK3 fusion, which was controlled by selpercatinib plus the NTRK inhibitor larotrectinib. Subsequently, tumor progressed with an acquired EML4::ALK fusion. Combination of selpercatinib with the dual NTRK/ALK inhibitor entrectinib reduced the tumor burden, which was followed by appearance of NTRK3 solvent-front G623R mutation. Preclinical experiments validated selpercatinib plus larotrectinib or entrectinib inhibited RET/NTRK3 dependent cells, whereas selpercatinib plus entrectinib was necessary to inhibit cells with RET/NTRK3/ALK triple alterations or a mixture of cell population carrying these genetic alterations. Thus, RET-altered MTC adapted to selpercatinib and larotrectinib with acquisition of ETV6::NTRK3 and EML4::ALK oncogenes can be managed by combination of selpercatinib and entrectinib providing proof-of-concept of urgency of incorporating molecular profiling in real-time and personalized N-of-1 care transcending one-size-fits-all approach.


  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")


  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
RET D898_E901del thyroid gland medullary carcinoma predicted - sensitive Selpercatinib Case Reports/Case Series Actionable In a Phase I/II trial (LIBRETTO-001), Retevmo (selpercatinib) treatment resulted in a clinical response after one month, with a partial response in liver lesions and abdominal lymph nodes that was maintained for 24 months, in a patient with metastatic medullary thyroid carcinoma harboring RET D898_E901del (PMID: 38438731; NCT03157128). 38438731