Reference Detail


Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at :

Ref Type Journal Article
PMID (26295973)
Authors Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D, Ji Y, Kim DH, Park WY, Shin HT, Kim KM, Ahn MJ, Park K, Sun JM
Title Identification of Driving ALK Fusion Genes and Genomic Landscape of Medullary Thyroid Cancer.
Abstract Text The genetic landscape of medullary thyroid cancer (MTC) is not yet fully understood, although some oncogenic mutations have been identified. To explore genetic profiles of MTCs, formalin-fixed, paraffin-embedded tumor tissues from MTC patients were assayed on the Ion AmpliSeq Cancer Panel v2. Eighty-four sporadic MTC samples and 36 paired normal thyroid tissues were successfully sequenced. We discovered 101 hotspot mutations in 18 genes in the 84 MTC tissue samples. The most common mutation was in the ret proto-oncogene, which occurred in 47 cases followed by mutations in genes encoding Harvey rat sarcoma viral oncogene homolog (N = 14), serine/threonine kinase 11 (N = 11), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (N = 6), mutL homolog 1 (N = 4), Kiesten rat sarcoma viral oncogene homolog (N = 3) and MET proto-oncogene (N = 3). We also evaluated anaplastic lymphoma kinase (ALK) rearrangement by immunohistochemistry and break-apart fluorescence in situ hybridization (FISH). Two of 98 screened cases were positive for ALK FISH. To identify the genomic breakpoint and 5' fusion partner of ALK, customized targeted cancer panel sequencing was performed using DNA from tumor samples of the two patients. Glutamine:fructose-6-phosphate transaminase 1 (GFPT1)-ALK and echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusions were identified. Additional PCR analysis, followed by Sanger sequencing, confirmed the GFPT1-ALK fusion, indicating that the fusion is a result of intra-chromosomal translocation or deletion. Notably, a metastatic MTC case harboring the EML4-ALK fusion showed a dramatic response to an ALK inhibitor, crizotinib. In conclusion, we found several genetic mutations in MTC and are the first to identify ALK fusions in MTC. Our results suggest that the EML4-ALK fusion in MTC may be a potential driver mutation and a valid target of ALK inhibitors. Furthermore, the GFPT1-ALK fusion may be a potential candidate for molecular target therapy.


  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")


  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
EML4 - ALK thyroid gland medullary carcinoma predicted - sensitive Crizotinib Case Reports/Case Series Actionable In a clinical case study, Xalkori (crizotinib) treatment resulted in a decrease in the lung, liver, and bone lesions in a patient with metastatic medullary thyroid carcinoma harboring EML4-ALK (e13:e20) that was treated on a Phase I clinical trial (PMID: 26295973; NCT01121588). 26295973