Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (26270481)
Authors Pan CX, Zhang H, Tepper CG, Lin TY, Davis RR, Keck J, Ghosh PM, Gill P, Airhart S, Bult C, Gandara DR, Liu E, de Vere White RW
Title Development and Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy.
URL
Abstract Text The overarching goal of this project is to establish a patient-derived bladder cancer xenograft (PDX) platform, annotated with deep sequencing and patient clinical information, to accelerate the development of new treatment options for bladder cancer patients. Herein, we describe the creation, initial characterization and use of the platform for this purpose.Twenty-two PDXs with annotated clinical information were established from uncultured unselected clinical bladder cancer specimens in immunodeficient NSG mice. The morphological fidelity was maintained in PDXs. Whole exome sequencing revealed that PDXs and parental patient cancers shared 92-97% of genetic aberrations, including multiple druggable targets. For drug repurposing, an EGFR/HER2 dual inhibitor lapatinib was effective in PDX BL0440 (progression-free survival or PFS of 25.4 days versus 18.4 days in the control, p = 0.007), but not in PDX BL0269 (12 days versus 13 days in the control, p = 0.16) although both expressed HER2. To screen for the most effective MTT, we evaluated three drugs (lapatinib, ponatinib, and BEZ235) matched with aberrations in PDX BL0269; but only a PIK3CA inhibitor BEZ235 was effective (p<0.0001). To study the mechanisms of secondary resistance, a fibroblast growth factor receptor 3 inhibitor BGJ398 prolonged PFS of PDX BL0293 from 9.5 days of the control to 18.5 days (p<0.0001), and serial biopsies revealed that the MAPK/ERK and PIK3CA-AKT pathways were activated upon resistance. Inhibition of these pathways significantly prolonged PFS from 12 day of the control to 22 days (p = 0.001). To screen for effective chemotherapeutic drugs, four of the first six PDXs were sensitive to the cisplatin/gemcitabine combination, and chemoresistance to one drug could be overcome by the other drug.The PDX models described here show good correlation with the patient at the genomic level and known patient response to treatment. This supports further evaluation of the PDXs for their ability to accurately predict a patient's response to new targeted and combination strategies for bladder cancer.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
PIK3CA D549Y missense unknown PIK3CA D549Y lies within the PIK helical domain of the Pik3ca protein (UniProt.org). D549Y has been identified in the scientific literature (PMID: 29106415, PMID: 26270481), but has not been biochemically characterized and therefore, its effect on Pik3ca protein function is unknown (PubMed, Mar 2024).
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
FGFR3 over exp urinary bladder cancer sensitive Infigratinib Preclinical - Pdx Actionable In a preclinical study, treatment with Truseltiq (infigratinib) led to improved progression-free survival in a patient-derived xenograft (PDX) model of bladder cancer with FGFR3 over expression (PMID: 26270481). 26270481
FGFR3 over exp urinary bladder cancer sensitive Dactolisib + Sorafenib Preclinical - Pdx Actionable In a preclinical study, the combination of BEZ235 and Nexavar (sorafenib) resulted in improved progression-free survival in an FGFR3-over expressing patient-derived xenograft (PDX) model of bladder cancer with secondary resistance to BGJ398 due to reactivation of downstream signaling, as evidenced by increased activation of Akt and Erk (PMID: 26270481). 26270481
PIK3CA H1047R urinary bladder cancer sensitive Dactolisib Preclinical - Pdx Actionable In a preclinical study, BEZ235 inhibited tumor growth in a patient-derived xenograft (PDX) model of bladder cancer harboring PIK3CA H1047R (PMID: 26270481). 26270481