Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type Journal Article
PMID (28512244)
Authors Lu H, Villafane N, Dogruluk T, Grzeskowiak CL, Kong K, Tsang YH, Zagorodna O, Pantazi A, Yang L, Neill NJ, Kim YW, Creighton CJ, Verhaak RG, Mills GB, Park PJ, Kucherlapati R, Scott KL
Title Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer.
Journal Cancer research
Vol 77
Issue 13
Date 2017 07 01
URL
Abstract Text Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in The Cancer Genome Atlas datasets. In addition to confirming oncogenic activity of the known fusion oncogenes engineered by our construction strategy, we validated five novel fusion genes involving MET, NTRK2, and BRAF kinases that exhibited potent transforming activity and conferred sensitivity to FDA-approved kinase inhibitors. Our fusion construction strategy also enabled domain-function studies of BRAF fusion genes. Our results confirmed other reports that the transforming activity of BRAF fusions results from truncation-mediated loss of inhibitory domains within the N-terminus of the BRAF protein. BRAF mutations residing within this inhibitory region may provide a means for BRAF activation in cancer, therefore we leveraged the modular design of our fusion gene construction methodology to screen N-terminal domain mutations discovered in tumors that are wild-type at the BRAF mutation hotspot, V600. We identified an oncogenic mutation, F247L, whose expression robustly activated the MAPK pathway and sensitized cells to BRAF and MEK inhibitors. When applied broadly, these tools will facilitate rapid fusion gene construction for subsequent functional characterization and translation into personalized treatment strategies. Cancer Res; 77(13); 3502-12. ©2017 AACR.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
BRAF F247L missense gain of function BRAF F247L lies within the phorbol-ester/DAG-type zinc finger domain of the Braf protein (UniProt.org). F247L confers a gain of function to Braf, as indicated by activation of downstream MAPK signaling and is transforming in cultured cells (PMID: 28512244, PMID: 29533785).
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
BRAF F247L Advanced Solid Tumor sensitive Dabrafenib Preclinical - Cell culture Actionable In a preclinical study, transformed cells expressing BRAF F247L demonstrated sensitivity to Tafinlar (dabrafenib) in culture (PMID: 28512244). 28512244
BRAF F247L Advanced Solid Tumor sensitive Trametinib Preclinical - Cell culture Actionable In a preclinical study, transformed cells expressing BRAF F247L demonstrated sensitivity to Mekinist (trametinib) in culture (PMID: 28512244). 28512244