Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, variants, or PubMed publications.

Have questions, comments or suggestions? - Let us know!

Email us at : ckbsupport@jax.org

Ref Type
PMID
Authors Yuichi Ishikawa, Koichi Saito, Naomi Kawashima, Michie Morimoto, Hidetoshi Murao, Daisuke Terada, Takeshi Yamaura, Shinji Hagiwara, Hitoshi Kiyoi
Title FF-10101 Retains Potent Inhibitory Activities Against Resistant Mutations to FLT3 Inhibitors, Newly Identified in Random Mutagenesis Screens
Journal Blood
Vol
Issue
Date 2019
URL https://ashpublications.org/blood/article/134/Supplement_1/2672/423193/FF-10101-Retains-Potent-Inhibitory-Activities
Abstract Text Background:FLT3-internal tandem duplication (FLT3-ITD) mutation is a poor prognostic factor for acute myeloid leukemia (AML). Several second-generation FLT3-targeted tyrosine kinase inhibitors with high selectivity and potency have been developed to date. Recently, gilteritinib was approved for the FLT3 mutation-positive relapsed or refractory AML patients. However, acquired mutations at the F691 residue in FLT3 kinase domain were identified in the patients who had disease progression after the treatment with gilteritinib, as with quizartinib treatment that caused resistant mutations at F691 and D835 residues. Therefore, it is very important to clarify the potencies of each FLT3 inhibitors against acquired FLT3 mutations for clinically selecting an appropriate FLT3 inhibitor according to the mutation type. In this study, we explored the resistant mutations against FLT3 inhibitors by random mutagenesis analysis and evaluated the cross-reactivity of FLT3 inhibitors against each resistant mutation. Methods: For random mutagenesis assay, 32D cells were infected with retroviruses encoding randomly mutagenized human FLT3-ITD. FLT3-ITD dependent 32D cells were established without an addition of IL-3, and then treated with FLT3 inhibitors, gilteritinib, FF-10101 and quizartinib, at concentrations of GI95 and 3 x GI95. Two weeks after treatment, full length FLT3-ITD sequences of viable clones were analyzed. The identified mutated FLT3-ITDs were introduced into 32D cells to confirm the resistance to FLT3 inhibitors. For cell growth assay, 32D transfectants were incubated with 5 FLT3 inhibitors (gilteritinib, FF-10101, quizartinib, crenolanib and midostaurin) for 3 days followed by determination of cell viability. Results: We identified the gilteritinib-resistant mutation (FLT3-ITD+D698N), quizartinib-resitant mutation (FLT3-ITD+N676T), and FF-10101-resistant mutation (FLT3-ITD+C695W) (Table). Inhibitory activity of gilteritinib against FLT3-ITD+D698N-expressing 32D cells (GI50, 27 nM) was decreased by 12-fold as compared with that against original FLT3-ITD-expressing 32D cells (GI50, 2.3nM). FF-10101 (GI50, 0.73 nM), quizartinib (GI50, 0.99 nM) and crenolanib (GI50, 19 nM) retained potency against FLT3-ITD+D698N, while midostaurin (GI50, 47 nM) did not have a potency. In FLT3-ITD+N676T-expressing 32D cells, inhibitory activities of quizartinib and midostaurin were decreased by 11 and 15-fold (GI50, 6.6 nM and 83 nM, respectively), while FF-10101 (GI50, 0.73 nM), gilteritinib (GI50, 6.6 nM) and crenolanib (GI50, 19 nM) retained potency. In FF-10101-resistant mutation (FLT3-ITD+C695W)-expressing 32D cells, the other inhibitors retained growth inhibitory activity. Conclusions: Resistant mutations to gilteritinib and quizartinib were newly identified in FLT3 kinase domain by random mutagenesis analysis. FF-10101 retained potent inhibitory activities against FLT3-ITD+N676T conferring resistance to quizartinib and midostaurin, and FLT3-ITD+D698N resistant to gilteritinib and midostaurin, although FF-10101 was vulnerable to FLT3-ITD+C695W substituted for C695 residue which forms covalent bond with FF-10101. These results indicated that FF-10101 was a promising agent for the treatment of patients with AML with FLT3 inhibitor-resistant mutations newly identified in this study.

Filtering

  • Case insensitive filtering will display rows where any text in any cell matches the filter term
  • Simple literal full or partial string matches
  • Separate multiple filter terms with a spaces, order doesn't matter (a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page, filtering has no impact on query parameters
  • Use quotes to match a longer phrase which contains spaces "mtor c1483f"

Sorting

  • Generally, the default sort order for tables is set to be first column ascending, however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column, be sure to set ascending or descending order for a given column, before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
FLT3 N676T missense unknown FLT3 N676T lies within the protein kinase domain of the Flt3 protein (UniProt.org). N676T has been associated with resistance to some FLT3 inhibitors (Blood (2019) 134 (Supplement_1): 2672), but has not been biochemically characterized and therefore, its effect on Flt3 protein function is unknown (PubMed, Nov 2021). Y
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
FLT3 exon 14 ins FLT3 N676T Advanced Solid Tumor resistant Quizartinib Preclinical - Cell culture Actionable In a preclinical study, transformed cells co-expressing FLT3 ITD and FLT3 N676T were resistant to treatment with Vanflyta (quizartinib) in culture (Blood (2019) 134 (Supplement_1): 2672). detail...
FLT3 exon 14 ins FLT3 D698N Advanced Solid Tumor resistant Gilteritinib Preclinical - Cell culture Actionable In a preclinical study, transformed cells co-expressing FLT3 ITD and FLT3 D698N were resistant to treatment with Xospata (gilteritinib) in culture (Blood (2019) 134 (Supplement_1): 2672). detail...
FLT3 exon 14 ins FLT3 N676T Advanced Solid Tumor resistant Midostaurin Preclinical - Cell culture Actionable In a preclinical study, transformed cells co-expressing FLT3 ITD and FLT3 N676T were resistant to treatment with Rydapt (midostaurin) in culture (Blood (2019) 134 (Supplement_1): 2672). detail...